

Congreso Mundial de Energías Renovables 2011

Evolución del Biodiésel y la Sustentabilidad Buenos Aires, Argentina Marzo 29 – 30 de 2011

Potencial de la Palma de Aceite en la Producción de Energías Renovables

Jens Mesa –Dishington Presidente Ejecutivo Fedepalma

Contenido

- 1. La agroindustria en fotos
- 2. Potencial de la palma de aceite en la producción de energías renovables
- 3. Biodiésel de palma en Colombia
- 4. Otras experiencias de uso de la biomasa en el sector palmero colombiano

1. La agroindustria en fotos

Panorámica de cultivo y planta extractora

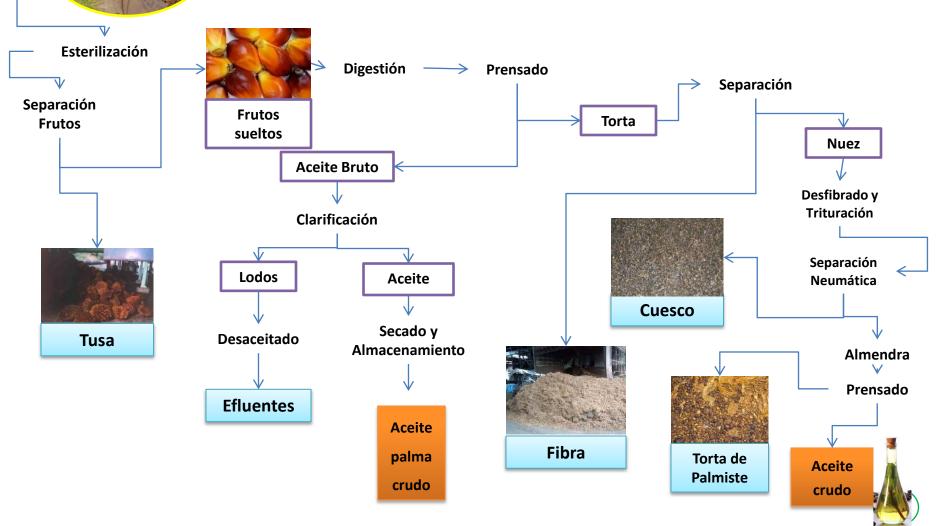
Fase agrícola

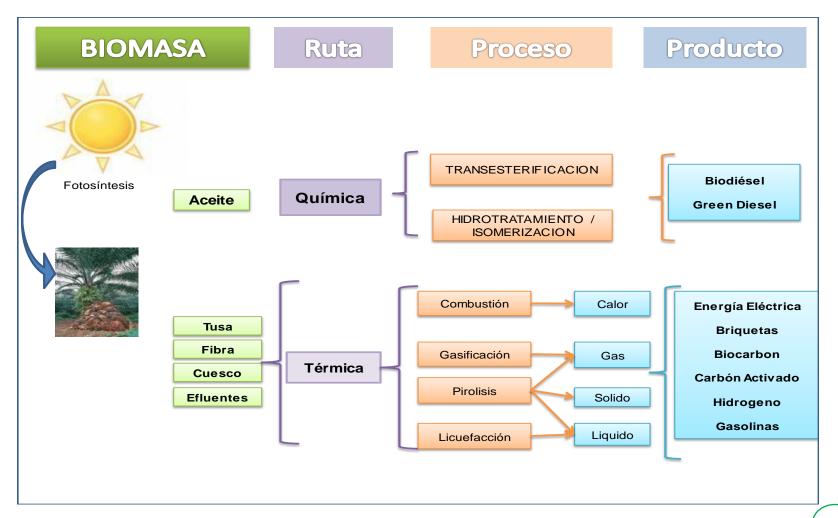
Vivero (12 a 18 meses)

Siembra en sitio definitivo

Fase de extracción

Procesamiento y extracción de aceite de palma


2. Potencial de la palma de aceite en la producción de energías renovables



Proceso de extracción de los aceites de palma

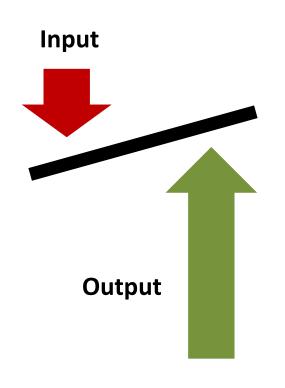
Rutas energéticas de los productos obtenidos de la palma de aceite

Fuente: Cenipalma

Potencial energético de los subproductos de la palma de aceite

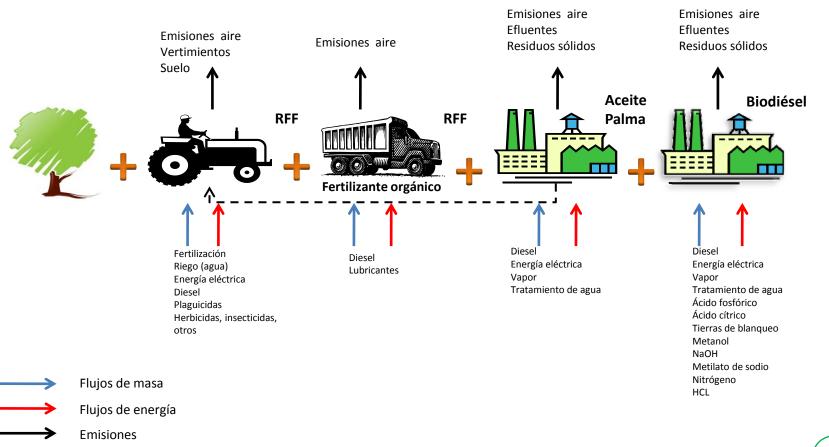
Biomasa	% RFF	% Biomasa Sólida	Producción (Kg ha ⁻¹ yr ⁻¹)	PCS (kJ/kg)	Potencial Energético (GJ ha ⁻¹ yr ⁻¹)
Aceite de palma	19 - 21		4.000	39.600	158,4
Aceite de palmiste	2 – 2,5		400	39.600	15,84
Racimo vacío (Tusa)	20 – 25	53,2	4.380	8.165	35,76
Fibra	11 – 14,5	32,3	2.660	19.201	51,07
Cuesco	5 – 7	14,6	1.200	21.445	25,73
Biogás (Efluente)	15 – 21 m³ ton FFB ⁻¹		392	22.900 kJ/m³	12,24
Total		13.032		299,04	

Fuente: Cenipalma, 2009


Comparación del potencial de producción de bioenergía de los principales biocombustibles

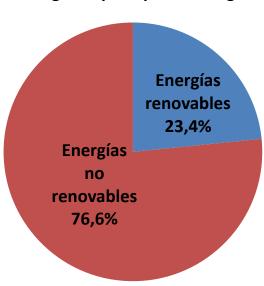
Biocombustible	GJ/ha	Ha/ton-e
Etanol de caña de azúcar	110-140	0,38 - 0,30
Etanol de maíz	63 – 76	0,66 – 0,55
Etanol de remolacha	117	0,36
Etanol de trigo	53 -84	0,79 – 0,50
Biodiésel de girasol	36	1,1,7
Biodiésel de soya	18-25	2,35 – 1,67
Biodiésel de palma	158,4	0,285

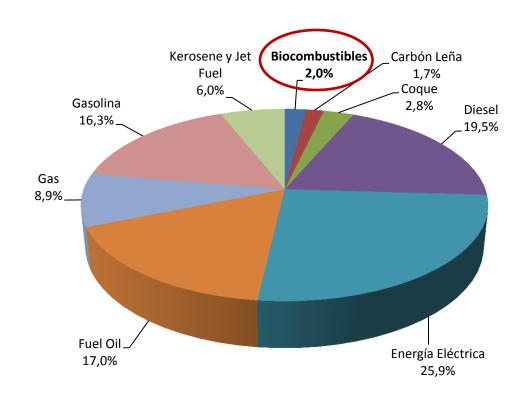
Fuente: Yañez, E et al, Renewable and Sustainable Energy Reviews 13 (2009)


El biodiésel de palma se destaca por tener un balance energético positivo y el más alto en los biodieseles.

Biocombustible	Output/ Input	Referencias
Biodiesel de colza (Europa)	1,7	ITC, (2000)
Biodiésel de higuerilla (Brasil)	2 – 2,9	Neto, et. al.(2004)
Biodiésel de soya (EUA)	3,2 – 3,4	Sheehan, (1998)
Biodiésel de girasol (Europa)	2,4 – 5,2	Janulis, (2003)
Biodiésel de palma	4,9 – 6,0	Yáñez, E. Et al, 2008

El biodiésel de palma disminuye entre 33% y 56% las emisiones de gases efecto invernadero, en comparación con el combustible fósil


3. Biodiésel de palma en Colombia



Estructura de la oferta energética en Colombia por fuente (2009)

Participación de la oferta energética por tipo de energía

Fuente: UPME 2010

¿Qué motivó el desarrollo de los biocombustibles en Colombia?

Diversificación de la canasta y autosuficiencia energética

Mejoramiento del medio ambiente

Desarrollo del sector agrícola – generación de empleo rural

Pilares del Programa Nacional de Biodiésel en Colombia

El biodiésel en Colombia se estructuró a partir de un marco normativo sólido (1 de 2)

Legislación y directrices de política general

- Ley 939/04. Marco de incentivos para la producción de biocombustibles.
- CONPES 3510/08. Lineamientos de política para promover la producción sostenible de biocombustibles en Colombia.

Normatividad Técnica

- Decreto 2629 de 2007. Promoción del uso de biocombustibles en el país.
- **Resolución 182142/07**. Registro de productores y/o importadores de biocombustibles para uso en motores diesel.
- Resolución 182087/07. Criterios de calidad de los biocombustibles para su uso en motores diesel.
- NTC 5444. Biodiésel para uso en motores diesel. Especificaciones.

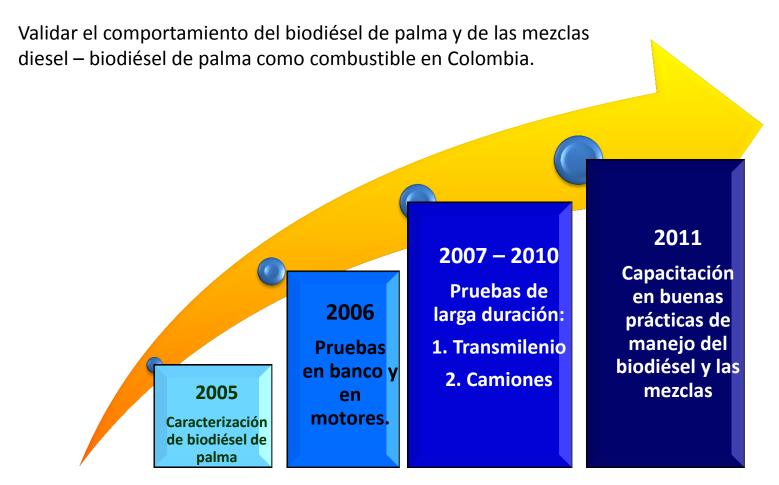
Fuente: Fedepalma

Marco normativo (2 de 2)

Normatividad Económica

- **Decreto 2594/07.** Establece un fondo de capital de riesgo para apoyar iniciativas productivas, entre ellas los proyectos de biocombustibles.
- Decreto 4051/07. Zonas Francas Permanentes.
- Resolución 180106/08. Establece disposiciones relacionadas con la estructura de precios del ACPM (diesel) y de la mezcla del mismo con el biocombustible para uso en motores diesel.
- Resolución 180134/09. Por la cual se modifica la resolución 182158 de diciembre de 2007, en relación con la estructura de precios del ACPM mezclado con biocombustible para uso en motores diesel.

Normatividad Ambiental


- Ley 1083/06. Establece normas sobre planeación urbana sostenible.
- Resolución180158/07. Por la cual se determinan los combustibles limpios de conformidad con lo consagrado en el Parágrafo del Artículo 1º de la Ley 1083 de 2006.

Fuente: Fedepalma

Hitos técnicos del Programa Nacional de Biodiésel en Colombia

Objetivo

Pruebas de larga duración con biodiésel de palma en buses articulados del sistema de transporte masivo en Bogotá (1'200.000 km)

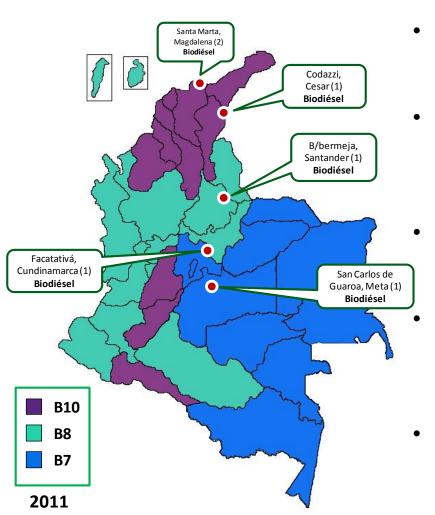
Resultados:

- ✓ Las mezclas diesel biodiésel de palma al 5, 10, 20, 30 y 50% cumplieron con las especificaciones de calidad establecidas en Colombia para el combustible diesel.
- ✓ La operación de los buses (12) durante los 100.000 Km. recorridos por cada vehículo fue normal con las mezclas diesel – biodiésel de palma a 2.600 msnm.
- ✓ No se presentaron desgastes en el sistema de inyección ni deterioro en la calidad del aceite lubricante.
- ✓ Se evidenció la reducción de las emisiones de material particulado a medida que se incrementa el porcentaje de biodiésel.

Pruebas de larga duración con biodiésel de palma en vehículos de carga (900.000 km)

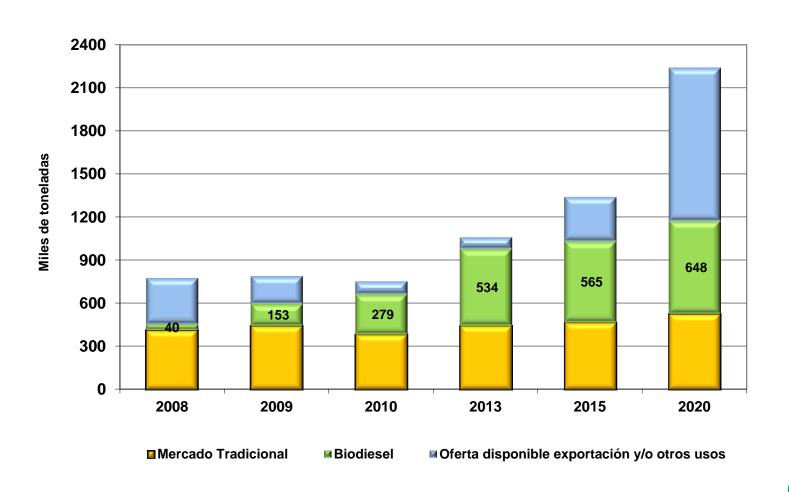
Resultados:

- ✓ El rendimiento del combustible para las mezclas diesel-biodiésel de palma *B5*, *B10* y *B20*, fue satisfactorio, manteniéndose dentro de los rangos de operación de la flota.
- La calidad del aceite lubricante no se vio afectada por el uso de las diferentes mezclas diesel-biodiésel de palma, razón por la cual se amplió a 8.000 kilómetros su frecuencia de cambio.
- ✓ El uso de las mezclas de combustible diesel-biodiésel de palma no influyó en los desgastes del sistema combustible para los 100.000 km recorridos/vehículo.
- ✓ Las emisiones de monóxido de carbono, hidrocarburos no quemados y material particulado *disminuyeron* al aumentar la concentración de biodiésel. Los óxidos de nitrógeno variaron de acuerdo con la carga aplicada y la forma de conducción, mostrando un incremento de 2% en B20 frente a B5.


Plantas de producción de biodiésel de palma en Colombia

No.			Capacidad Instalada	
	Empresas	Ubicación	Toneladas /año	Galones/año
1	Oleoflores S.A.	Codazzi	60.000	18.120.000
2	Odin Energy Ltda	Santa Marta	36.000	10.872.000
3	BioD S.A	Facatativa	100.000	30.200.000
4	Biocombustibles Sostenibles del Caribe S.A.	Santa Marta	100.000	30.200.000
5	Aceites Manuelita S.A.	San Carlos de Guaroa	100.000	30.200.000
6	Ecodiesel Colombia S.A.	Barrancabermeja	100.000	30.200.000
		Total	496.000	149.792.000

El 92% de la producción de biodiésel está integrada con los productores de aceite de palma


Programa Nacional de Biodiésel Mezclas

- Inició en enero de 2008, con una mezcla B5 en algunas regiones del país.
- Durante 2009 y 2010, se consolidó la producción y uso del producto en todo el país.
 - En promedio, en 2010, se utilizó una mezcla 7,12%
 - Colombia es el primer país del mundo que utiliza mezclas superiores al 5% en todo el parque automotriz.
 - El aceite de palma es la única materia prima utilizada en la producción de biodiésel en Colombia.

El biodiésel en Colombia ha incrementado el consumo local de aceite de palma sustituyendo exportaciones

4. Otras experiencias de uso de la biomasa en el sector palmero colombiano

Generación de energía térmica a partir de la biomasa (vapor).

- Tradicionalmente las plantas de beneficio (plantas extractoras) utilizan la fibra y el cuesco como combustible en las calderas.
- Se consume el 100% de la fibra y el 70% del cuesco producido.
- Se caracterizan por ser sistemas de baja presión (20 psi).
- El vapor producido cubre las necesidades energéticas de las plantas y además se tienen excedentes que podrían ser utilizados en otros procesos.

Cogeneración en el sector palmero colombiano

- Menos del 20% de las plantas de extracción de aceite cuentan con el proceso de cogeneración, sin alcanzar aún su autosuficiencia energética.
- Los sistemas tradicionales de cogeneración operan con vapor a baja presión y temperaturas, tanto en calderas como en turbinas, lo cual hace que sea bastante ineficiente su operación
- La energía representa entre el 15 y 20% de los costos variables de procesamiento en planta de beneficio.
- Colombia cuenta con legislación que permite la venta de los excedentes de energía eléctrica a la red pública nacional

Potencial de cogeneración de energía en las plantas de beneficio en Colombia

Potencial de generación de energía eléctrica (MWe

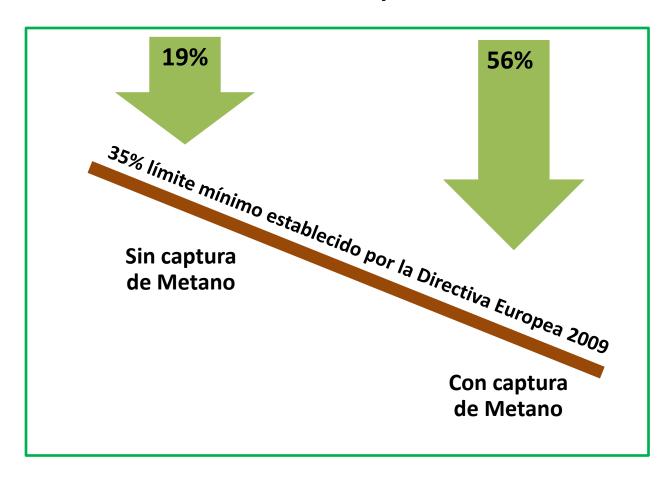
Biomasa	2009	2010	2015	2020
Tusa	40	37	67	112
Fibra	76	71	127	212
Cuesco	38	36	63	106
Total	171	210	344	558

La capacidad promedio de generación hidroeléctrica en Colombia está entre 400 y 600 MW por central

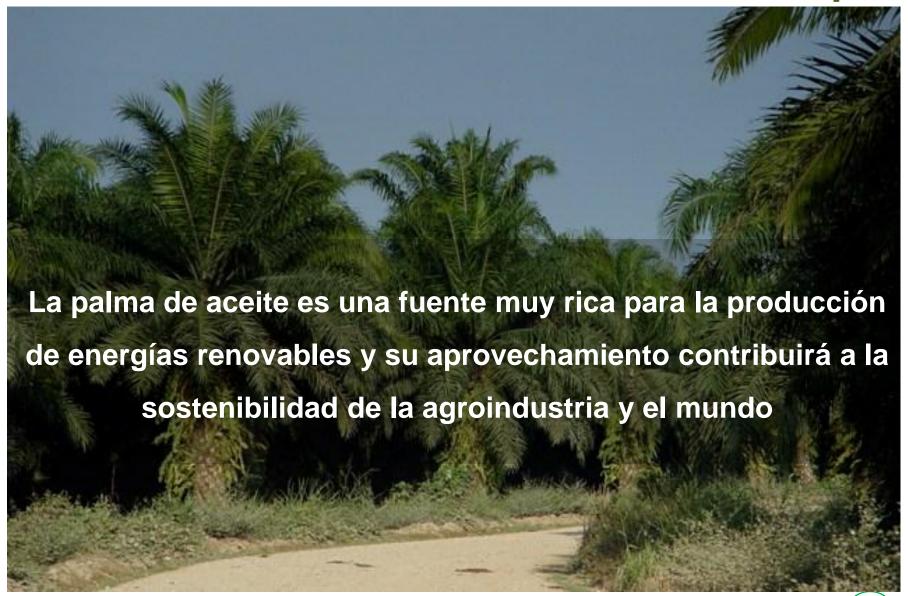
Fuente: Cenipalma, 2009. Cálculos Fedepalma

Generación de Energía a partir de biogás

El uso de los efluentes está enfocado a la producción y captura de metano y su uso en la generación de energía.



Con la captura y uso del biogás, el sector palmero contribuye de forma significativa en la disminución de la huella del carbono del biodiésel de palma



Proyecto Sombrilla MDL para la captura de gas metano en plantas de beneficio de palma en Colombia

- En este proyecto participan 32 plantas de beneficio que representan el 80% de la producción de aceite de palma del país.
- Es el primer proyecto sectorial MDL aprobado por las Naciones Unidas (25 Mayo 2009).
- Tiene un potencial de producción de reducción de CO₂ de 757.000 ton/año (sin cogeneración).

